The existence of the radiating system 5⁶ suggested the possibility of a radiating (3,4)-connected net formed of hexagons which would fill the gap between the plane 5-gon net and the 7-gon, 8-gon, and 9-gon periodic nets. There is in fact a net of this kind (Fig. 15) which consists of an infinite set of concentric tetrahedra linked alternately by lines joining vertices and midpoints of edges. Apart from the central group of 10 3-connected points each successive tetrahedral shell contains 6 3-connected and 4 4-connected points so that for the infinite system $c_3:c_4=3:2$. This net, $R_{3,4}$, completes the family of fundamental nets of Table 2.

Fig. 15. The radiating net $\{6, \frac{3}{4}\}$.

The relation of the radiating systems and the surface tessellations of part VII to other 4-connected systems is shown below.

Regular and uniform 4-connected systems

y=2 These include the following:

- n=3 octahedron, $\{3,4\}$
- n=4 plane net, {4,4}
- $n \ge 5$ (a) infinite plane radiating nets,
 - (b) the infinite three-dimensional surface tessellations of part VII, $\{5,4\}$, $\{6,4\}$, and $\{7,4\}$; others have $2\langle y \rangle 3$. (The y values for these nets were not given, and $\{7,4\}$ was not illustrated; it is the reciprocal of Fig. 22(c) of part VII).

y = 3

n=3 finite radiating 3⁶ [Fig. 13, (a) and (b)]

n=4 finite radiating 4⁶ [Fig. 13(c)]

n=5 infinite radiating 5⁶ (Fig. 14)

y=6

n=6 diamond net, 6^6 or (6,4).

References

- MACKAY, A. L. (1962). Acta Cryst. 15, 916.
- WASER, J. & MCCLANAHAN, E. D. (1951). J. Chem. Phys. 19, 413.
- WELLS, A. F. (1954a). Acta Cryst. 7, 535.
- Wells, A. F. (1954b). Acta Cryst. 7, 545.
- Wells, A. F. (1955). Acta Cryst. 8, 32.
- Wells, A. F. (1956). Acta Cryst. 9, 23.
- Wells, A. F. & Sharpe, R. R. (1963). Acta Cryst. 16, 857.

Acta Cryst. (1965). 18, 900

A Ternary Alloy with $PbCl_2$ -type Structure: TiNiSi(E)*

BY CLARA BRINK SHOEMAKER AND DAVID P. SHOEMAKER

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

(Received 29 July 1964)

Beck and coworkers have found E phases in several ternary systems of transition elements with either silicon or germanium at the composition 1:1:1. The crystal structure of TiNiSi(E) has been determined and refined by least squares with (limited) three-dimensional single-crystal data to a final R value of 0.086 (excluding 002 due to apparent extinction, and all non-observed reflexions). The lattice parameters for the primitive orthorhombic cell are:

$$a_0 = 6.1484 \pm 0.0012, \ b_0 = 7.0173 \pm 0.0014, \ c_0 = 3.6698 \pm 0.0007 \text{ Å}$$

The *E* phase is isotypic with PbCl₂(*C*23), space group *Pnam*. All near-neighbor distances are within 0.06 Å of the following average values: Ti–Ti 3.18, Ti–Ni 2.83, Ti–Si 2.61, Ni–Ni 2.67, Ni–Si 2.33 Å The numbers of near-neighbors are compared with those in Co₂Si, $\theta - Ni_2Si$ and U₃Si₂.

Introduction

The E phase was first identified by Westbrook, DiCerbo & Peat (1958) in the titanium-nickel-silicon

* Sponsored by Army Research Office (Durham). Computations were done in large part at the M. I. T. Computation Center.

system at the composition TiNiSi. Subsequently Spiegel, Bardos & Beck (1963) concluded from the powder X-ray diffraction diagrams that twenty-one additional phases in other ternary systems of transition elements with either silicon or germanium are isomorphous with TiNiSi(E) and they indexed the powder patterns on large orthorhombic cells. They found

Table 1. X-ray powder photographic data for TiNiSi

WVL#10BS	THETA OBS**	н	ĸ	ι	CAL	DELTA THETA	ICAL#*¥	WVL 1085	THETA OBS	н	ĸ	L	THETA CAL	DEL TA THE TA	ICAL
3 М	9.648	1 0 0	1 2 1	0 0 1	9.596 12.692 13.713	0.052	1266 238 1	3 W(8R)	52.239	{^1_5	1 6 4	1 2 1	52.069 52.339 52.549	0.170 -0.100	70 296 156
		2	0	0	14.523		8			0	7	1	52.861		55
3 M	15.633	1	1	1	14+653	0.078	139	3 VW	53.780	(4	0	3	53.563	0.130	4 2
		ż	i	ò	15.889	0.0.0	66			}i	ź	í	53.801	-0.022	230
3 V S	19,210	2	0	1	19.094	0.116	2769			{2	4	3	53.916	-0.137	2
3 14	10 484	11	2	1	19.197	0.013	4904	3 VW	54.244	16	2	1	53.984	0.013	10
3 vs	20.252	ź	í	ĩ	20.186	0.065	4090			4	1	3	54.376	-0.132	83
3 M S	20.653	1	3	0	20.647	0.006	1590	3 W	55.198	12	6	2	55.174	0.025	151
3 VVW	21.902									(6	3	2	55.436	-0.018	69
3 5	22+510	(0	3	1	23.006	0.095	2667	3 VW	55.877	4	é	5	55.919	-0.042	145
		13	í	ò	23.070	0.030	1895	3 VW	56.675	(5	5	0	56.460	0.145	38
3 W	23.201	2	2	1	23.207	-0.006	870			15	7	1	56.598	0.007	66
3 W	24+230	2	3	0	24+233	-0.002	842			10	5	3	56.718	-0.112	123
3 5	24.833	ō	ó	ž	24.843	-0.010	2415	3 W	57.170	ò	2	4	57.167	0.002	289
3 M	25.787	3	?	0	25.824	-0.037	820			6	;	ì	57-892		19
3 MW	26.339	3	1	1	26.399	-0.060	611			4	÷	ż	58.599		11
		1	ì	2	26.872		153			4	6	1	58+623		53
3 VW	27.230	1	4	0	27.191	0.039	335	IM	58.814	1	7	0	58.798	0.088	385
	21.007	ò	ź	2	28.302	0.001	49			lí	i	4	58+862	-0.048	11
		3	2	1	28.922		68			5	5	1	59.188		10
		2	0	2	29.293		1			3	~^^	2	59+422		37
3 VW(BR)	30.029	(3	3	ó	30.007	0.022	71	I MW	60.233	JÓ	ž	4	60.202	0.031	2
		2	1	2	30.096	-0.067	19			16	1	2	60.216	0.017	150
		14	0	0	30.101	-0.072	4			4	3	3	60.400		13
		.2	4	1	30.194		49	1 VW	60.796	12	ŝ	3	60+698	0.088	49
		4	ĩ	ŏ	30.892		68			15	4	2	60.757	0.029	328
3 M	32.402	2	2	2	32.435	-0.033	313			2	2	4	61.181		0
		3	3	1	32.849		19			0	é	0	61+25/		57
3 M S	33.255	14	ž	ò	33.199	0.057	420			3	7	ĩ	61.730		0
		{2	4	1	33.217	0.038	6			2	1	4	62.006		1
3 1/11	22 6 70	11	3	2	33.264	-0.009	651			7	1	2	62+102		19
3 W	34.272	1	5	0	34.292	-0.020	236			î	ė	ò	62.500		í
3 MS	35.051	3	1	ž	35.065	-0.015	925			6	2	2	62.683		0
		3	4	0	35.340		11	1 W	63.498	15	1	3	63.499	-0.001	327
3 M	16.017	14	2	1	35.975	-0.006	165	2 VW	63.875	(5	1	3	63.787	0.087	164
		l2	3	2	36.151	-0.135	440			16	4	1	63.855	0.019	1
		4	3	0	36.879		6	1 VW	64.691	{2	2	4	64.586	0.105	70
3 MC	37.777	1	5	1	36+963	0.079	312			· 7	í	ĩ	65.280	0.002	0
5 45	510222	13	ź	ž	37.243	-0.021	498			5	٤	¢	65.354		ō
		0	4	2	37.441		80	1 VW	65. 44	1	2	4	65.573	-0.029	164
3 MS	37.925	3	4	1	37.980	~0.005	1188			1	é	í	65.714	-01007	17
	50.5.0	4	3	ĩ	39.481	0.000	51	1 VW	65.933	2	ρ	າ	65.947	-0.013	86
3 104		,5	1	0	39.528		21	I VV	66.250	15	2	3	66.191	0.069	50
5 VW	39.084	16	1	3	39.769	~0.057	112			(3	5	3	66+339	-0+080	102
		ί1.	i	3	40.683	0.156	45			4	7	ó	66+538		46
3 VW	40.839	13	3	2	40.780	0+059	55			1	ŧ	٦	66.888		115
		2	4	2	40+862	-0.024	42			6	2	2	67.185	0.155	108
		ō	6	ō	41.234		ō	1 M(BR)	6P.030	14	ė	2	68.115	-0.085	249
		4	1	2	41.560		50			6	2	1	68.132	-0.102	101
		3	ś	0	41.028		103			6	1	0	68.544		4
		4	4	ō	41.821		64			5	ě	í	68.879		69
3 M	42.094	15	1	1	42.085	0.000	700			2	3	4	69.388		145
3 M	42.797	12	6	3	42.141	-0.047	218	1 MW	69.549	17	3	ĵ.	69.509	0.040	113
		Įī.	2	3	42.771	0.026	370	2 VW	69.902	17	2	0	69.896	-0.001	309
3 M	43.350	2	1	3	43.400	-0.051	365			2	8	ì	69.938	-0.035	155
3 MW	43.001	15	5	2	43.642	-0+041	350	1 MW	70.202	4	2	1	70.225	0.077	426
		13	ŝ	i	44.274	-0.020	169	2 VW	/9461/	2	, ,	1	70.627	-9.010	213
		۱4	4	1	44.355	-0.102	21	1 VW(BR)	71.082	3	2	4	71.027	0.055	223
3 MW	44.705	1	5	2	44.653	0.053	217			5	3	э	71.306		32
		12	6	ò	44.848	-2.143	96			3	<i>'</i>	4	71+340		39
		5	3	0	45.093		14	1 MW(BR)	72.562	6	÷	ĩ	72.568	-0.006	305
3 MW	45.439	10	3	3	45.330	0.078	316			3	8	0	72.779		0
		3	4	2	45.635	-0.057	10			7	2	1	72.878		92
3 VW	46.312	1	3	3	46.231	0.081	158			6	4	ż	75+112		31
3	47 417	4	3	2	47.102		6	1 W	76.757	10	8	2	76.730	0.027	225
		15	6	í	47.379	0.038	60			14	-	3	76+923	-0+166	165
		5	3	i	47.625		31			á	ō	4	77.887		11
		3	1	3	47.910		105			3	8	1	77.948		13
		6	0	0	48.780		11	1 W	78.502	,	1	2	78.073	-0.030	75
-		2	ŝ	3	48.945		34			6	0	3	78+681	0.020	37
3 VW	49.376	3	6	0	49.369	0.007	0			?	4	0	78.729		74
		5	1	2	49.488	-0.112	25			1	5	2	78.911		7
3 W	49.878	15	4	õ	49.958	-0.080	258			3	6	3	80.277		7
3	50.601	13	2	3	50.005	~0.126	12	1 w	80.548	6	!	3	80.636	0.012	147
	20.391	ī	4	3	51.117	-0.033	2	1	020109	6	1	2	02+208	-0.039	379
3 VVW	51.294	(i	7	0	51.183	0.101	26	2 MW	83.376	š	i.	3	83.335	0.040	190
		16	?	1	51.358	-0.074	33								
		6	2	0	51.602	-0.128	0								
		5	2	2	51.813		134								
		3	5	2	51.926		6								
		4	4	2	52.010		8 89								
				-			-								

* Numbers given in first column: 3 = Cu Kα, 2 = Cu Kα₂, 1 = Cu Kα₁.
** THETA OBS is the observed value for the Bragg angle θ in degrees minus an absorption correction of the form 57.29578. Kλ. (cos θ_r/sin θ_r + cos θ_r/θ_r). (1/4d),
in which θ_r is the Bragg angle in radians, d is the interplanar spacing, and K is an adjustable parameter (see text).
*** ICAL is the calculated powder intensity (without correction for absorption) divided by 100 and multiplied by 1, ¹/₃, or ²/₃ in the respective cases α, α₂, α₁.

that all these E-silicides and germanides are characterized by a rather restricted range of homogeneity around the 1:1:1 composition.

Our studies based on tiny single-crystal fragments isolated from a crushed sample of TiNiSi(E), kindly sent to us by Professor Paul A. Beck (University of Illinois), did not confirm the large orthorhombic cell found by Spiegel et al. (1963). Approximate values for the cell dimensions were obtained from precession photographs and were refined by a least-squares fit of the lines observed on a powder diffraction diagram taken by the Straumanis method with Cu $K\alpha$ radiation in a Philips powder camera with 57.3 mm radius. A least-squares program LSCELP was written in FORTRAN for the IBM 7094 computer, similar to the ALGOL program described by Evans, Appleman & Handwerker (1963). An absorption parameter Kwas introduced in conjunction with the absorption function of Nelson & Riley (1945). An orthorhombic cell with the following cell dimensions was obtained for TiNiSi(E) on least-squares refinement:

 $a_0 = 6.1484 \pm 0.0012, \ b_0 = 7.0173 \pm 0.0014,$ $c_0 = 3.6698 + 0.0007 \text{ Å}; \ K = (0.92 + 0.24) \times 10^{-3}.$

The limits given are standard deviations. Table 1 is the output of LSCELP and shows the indexing of the powder diagram and the agreement obtained for the observed and calculated theta values.

The systematic absences indicate that the space group is *Pnam* or *Pna*. The observed density (Spiegel *et al.*, 1963) is 5.66 g.cm⁻³ and the calculated number of formula units per cell is 4.00. The ratios of the cell dimensions, the number of atoms per cell and the space group suggest that the structure of the *E* phase is related to the PbCl₂ structure (*C*23 type). Trial positional parameters were derived from the PbCl₂ structure, assuming Si in the Pb position and Ti and Ni in the two Cl positions so that Ti would have a larger number of neighbors than Ni. (In Ti- or Ni-containing Laves phases Ti occupies the CN16 position and Ni the CN12 position.) Intensities calculated for this structure were in reasonable agreement with the observed powder diffraction intensities.

Refinement of the structure

The structure was refined on the basis of structure amplitudes, obtained from the visual estimation of intensities recorded with Mo $K\alpha$ radiation by the equi-inclination Weissenberg method. Two irregular crystal flakes were used, one with largest dimension about 0.02 mm for the recording of layers (hk0)-

(hk2) and one with largest dimension about 0.03 mm for layers (h0l) - (h2l). Although exposures up to 200 hours were used only 107 independent reflexions were strong enough to be observed.

The refinement was carried out by several cycles of full-matrix least-squares analysis on the IBM 7094 computer with the program ORFLS (Busing & Levy, 1962). The structure factors were calculated with the scattering factors tabulated in *International Tables for X-ray Crystallography* (1962). No absorption, extinction or dispersion corrections were applied. The standard errors in the structure amplitudes, on which the weights were based, were set equal to 4.0 for all reflexions with $|F_o| \le 40$ and to $\frac{1}{10} |F_o|$ for $|F_o| > 40$. Ten parameters were refined: an overall scale factor and for each atom an isotropic temperature factor and two positional parameters.

The refinement proceeded very rapidly from an initial R value of 0.399 to a final value of 0.086. The non-observed reflexions were excluded from refinement and from the R index; the 002 reflexion was also excluded from the last refinement cycle because of evidence of extinction. An analysis of R as a function of l did not show any trend inconsistent with confinement of all atoms to mirror planes as would be required by space group *Pnam* $(D_{2h}^{\hat{1}6})$. No structure factors calculated for the non-observed reflexions in the observed range of the reciprocal lattice exceed significantly the estimated values of F_{\min} , except for the reflexions 120 and 462, which were therefore included in the last refinement cycle. The R value including the non-observed reflexions with $|F_o| =$ $\frac{1}{2}$ F_{min} and including 002 is 0.191, the large increase probably resulting from the weakness of the photographs and the high values for F_{\min} .

In order to determine whether the three kinds of atom were placed correctly in the three positions one least-squares cycle was run in which only the positional parameters and the 'atom multipliers' (occupancy factors) were varied. This resulted in no significant changes in the parameters. The final parameters are given in Table 2 and the observed and calculated structure factors in Table 3.

Discussion

The interatomic distances listed in Table 4 were calculated with the IBM 7094 FORTRAN program DISTAN, written by one of us (D.P.S.). This program takes the coordinates of the atoms in the asymmetric unit, calculates the symmetry equivalent positions and searches all adjacent cells for distances below a specified limit.

Table 2. Atomic parameters for TiNiSi

Atom	CN	x	$\sigma(x)$. 104	У	$\sigma(y)$. 104	z	В	$\sigma(B)$
Ti	15	0.0212	10	0.1803	11	1	0.12	0.13
Ni	12	0.1420	8	0.5609	8	ł	0.37	0.12
Si	9	0.7651	18	0.6229	18	1 d	0.24	0.19

Table 3. Observed and calculated structure factorsfor TiNiSi

H K FOBS FCAL	H K FOBS FCAL
L=0	1 7 47 -45
4 0 +19 9	3 7 +37 -2
60 38 34 80 48 49	4 7 51 -54 5 7 +41 20
1 1 31 30 2 1 15 mll	1 8 *38 12
3 1 92 -95	3 8 440 7
4 1 29 25 5 1 22 -18	L=2
6 1 48 46	0 0 E111 -165
8 1 • 25 4	4 0 +22 -8
0 2 26 24	6 0 33 -29 8 0 40 -44
2 2 53 -52	1 1 24 -22
4 2 65 -67	3 1 69 75
5 2 41 41 6 2 • 23 3	4 1 25 -20
7 2 32 -33	6 1 39 -41
2 3 64 -67	7 1 24 -17 0 2 19 -19
3 3 29 24 4 3 #28 9	1 2 • 15 11
5 3 • 31 15	3 2 55 58
7 3 +38 40	4 2 52 55 5 2 35 -34
0 4 37 -39	6 2 *23 -2 7 2 35 30
2 4 • 25 21	1 3 54 -59
3 4 • 27 - 12 4 4 36 - 32	2 3 50 53 3 3 24 - 20
54 65 68 64 #36 14	4 3 +27 -7 5 3 +30 -14
7 4 + 39 23	6 3 39 -29
1 5 51 -52 2 5 59 -65	0 4 30 33
3 5 ■ 30 - 8 4 5 ■ 32 14	2 4 26 -18
5 5 • 34 - 25	4 4 36 28
65 *37 8 06 *29 -3	5 4 54 -60 6 4 *34 -12
1 6 55 -50 2 6 40 41	15 43 43 25 48 54
36 • 32 - 0	3 5 + 29 7
56 +37 1	4 5 •31 -11 5 5 •33 22
6 6 *39 5 1 7 *33 -22	6 5 *36 -7 0 6 *29 2
2 7 +34 -13	1 6 47 51
4 7 * 35 31	26 36 -36 36 +31 -0
57 +39 14 08 49 -49	4 6 ##33 -44 5 6 #36 -0
1 8 *36 -6	1 7 • 32 18
28 • 37 - 39	2 7 • 33 11 3 7 • 34 - 28
4 8 +40 23	47 *36 -25 08 47 44
L=1	18 *35 5
4 0 + 20 7	20-30 33
8 0 55 -24 8 0 55 61	20 51 -58
0 1 *10 1	4 0 *26 -7 6 0 *30 16
2 1 84 -85	8 0 51 -52
31 48 44 41 42 - 38	0 1 •18 -2 1 1 26 -19
5 1 72 -76	2 1 54 55
7 1 +23 -0	4 1 28 27
1 2 81 88 2 2 50 45	5 1 51 56 6 1 #24 21
3 2 21 -16	1 2 53 ~55
5 2 29 25	3 2 +21 10
6 2 48 -41 7 2 27 28	4 2 28 23 5 2 +24 -20
0 3 93 112	6 2 32 33
2 3 23 -24	L=4
3 3 • 26 10 4 3 • 29 - 19	20 + 27 1
53 *32 17 63 *36 15	40 *30 9 11 *22 12
7 3 • 39 12	2 1 +22 -4
2 4 + 26 5	5 1 40 447 4 1 #24 14
3 4 81 -91 4 4 *31 -13	5 1 *26 -11 6 1 33 31
5 4 42 - 37	0 2 +23 9
7 4 +41 16	2 2 29 -25
05 58 64 15 #28 0	3 2 37 -38 4 2 33 -37
2 5 39 29	1 - 6
4 5 40 -36	2 0 35 34
5 *36 11 65 *39 43	0 1 *26 -1 1 1 *26 9
1 6 41 40	2 1 37 -36
3 6 +34 -8	4 1 +28 -20
4 6 40 25 5 6 * 38 -3	5 1 38 -38
6 6 *41 36 0 7 38 -31	L=6 0 0 5661
1 1 1 1 1	TODE in

* Non-observed, value listed under FOBS is F_{min}.
** Non-observed, but included in least-squares cycle.
E Left out of least cycle because of extinction.

Table 4. Observed interatomic distances for TiNiSi

The standard deviations in the distances average about 0.012 Å. The distances are given for the atoms listed in Table 2, going around each atom clockwise in Fig. 1(a) starting at 12 o'clock. Only distances smaller than 3.3 Å are listed.

	Ti	Ni	Si
Towards atoms in the same plane	Si 2.60 Ti 3.224 Ni 2.777 Ti 3.220 Ni 2.88	3 Ti 2.881 6 Si 2.344 2 Si 2.358 6 Ti 2.772 1 1 1	Ni 2·358 Ni 2·344 Ti 2·603
Towards atoms in neighboring planes	Ti 3·13 Ni 2·89 Si 2·64 Ni 2·770 Si 2·574	6 Si 2·314 1 Ti 2·891 6 Ti 2·770 0 Ni 2·673 4	Ni 2·314 Ti 2·646 Ti 2·574

Fig. 1(a) gives the projection of the structure down the z axis. All atoms are situated in the mirror planes at $z = \frac{1}{4}$ and $\frac{3}{4}$ perpendicular to the z axis. The Si atom has a total of 9 near neighbors: 6 atoms (4 Ti + 2 Ni) at the corners of a triangular right prism (prism axis parallel to z) and 3 more atoms (2 Ni+1 Ti) outside the rectangular prism faces in the same mirror plane as the center atom. The shortest Si–Si distances are 3.554 Å. This type of 9-coordination for Si is very commonly found for the metalloid atom in silicides, borides, phosphides and carbides (Aronsson, 1960).

The Ni atom has a total of 12 near neighbors: 8 atoms (4 Ti + 2 Ni + 2 Si) at the corners of a quadrangular right prism (prism axis parallel to z) and 4 more atoms (2 Ti+2 Si) outside the side prism faces in the same mirror plane as the center atom. The twelvefold coordination around the Ni atom can be derived from a body-centered cubic arrangement (CN14) by elongating the cube in the direction of the z axis, so that the two Ni–Ni distances along the z axis become 3.670 Å, which is too long to be considered as a bonding distance. By contrast, in the frequently occurring $CuAl_2$ structure (C16 type) the Cu is at the center of a square anti-prism, which leads to a contraction along the z axis and larger distances to the four atoms in the equatorial plane, thus resulting in an effective coordination number of 10 for the Cu atom.

The Ti atom has a total of 15 near neighbors: 10 atoms (2 Ti, 4 Ni and 4 Si) at the corners of a pentagonal right prism (prism axis parallel to z) and 5 more atoms (2 Ti, 2 Ni and 1 Si) outside the rectangular prism faces in the same mirror plane. Two more Ti atoms are on the z axis at a distance of 3.670 Å from the center atom, that is, 0.45 Å farther away than the Ti atoms in the equatorial plane. One more Si atom in the center plane is at a distance of 3.482 Å. In the well known icosahedral arrangement of atoms as found in Laves phases, β -W phases and phases related to the σ phase, 10 atoms form a five-sided antiprism, which allows a closer approach of the atoms on the z axis and moves the atoms in the equatorial plane outward, thus giving the center atom 12 near neighbors.

Several transition element intermetallic compounds containing Si, Ge, P, etc. have been assigned the (anti-) PbCl₂-type (C23) structure (for references see Jellinek, 1959). Inspection of the cell dimensions of these compounds shows that most of them have a/b values in the range 0.67–0.73, namely: Rh₂Ge, δ -Ni₂Si, Co₂Si, Ru₂Si, Ir₂Si (Bhan & Schubert, 1960), Rh₂Si, Rh₂Ta (Giessen, Ibach & Grant, 1964), Rh₂Sn, Pd₂Sn, Pd₂Al, Pd₂Ga, Pd₂In. However TiNiSi (*E*), Co₂P, and Ru₂P (Rundquist, 1960) have a/b values in the range 0.84–0.88, which is within that reported for several other compounds with the PbCl₂-type or anti-PbCl₂-type structure, for instance ThS₂ (Zachariasen, 1949b), ThSe₂(D'Eye, 1953), Ca₂Si, Ca₂Ge,

CaH₂ (Bergsma & Loopstra, 1962), SnCl₂ (van den Berg, 1961), and PbCl₂ itself. The atomic parameters determined for representatives of these two groups are not very different but the smaller a/b value for the compounds in the first group causes the numbers of neighbors for the various atoms to be significantly different from those we have described for TiNiSi. (A comparison of the Co₂Si and Co₂P structures is given by Rundquist, 1960).

The coordination polyhedra for the atoms in these structures are very complicated and the atomic surroundings may be best compared by examining the

Fig. 1 (a). Projection of TiNiSi down the z axis. Solid-line net at $-\frac{1}{4}$ (and $\frac{3}{4}$), broken-line net at $\frac{1}{4}$. (b) Projection of θ -Ni₂Si (Ni₂In type) down hexagonal [110]. Solid-line net at $-\frac{1}{4}$ (and $\frac{3}{4}$) and broken-line net at $\frac{1}{4}$ of [110] lattice repeat. (c) Projection of U₃Si₂ down the (tetragonal) z axis. Solid-line net at $z=\frac{1}{4}$, broken-line net at z=0. (d) Projection of Co₂Si down the z axis. Nets as in (a). The atoms are to be identified as follows:

	Large circles	Intermediate circles	Small circles
(a)	Ti	Ni	Si
(b)	Ni(I)	Ni(II)	Si
(c)	U(ÌÌ)	U(Ì)	Si
(<i>d</i>)	Co(I)	Co(II)	Si

bonding networks lying in the mirror planes. The networks in Fig. 1 are drawn so that any distance between unconnected atoms is greater than the distance between any pair of connected atoms (Wells, 1954). Co₂Si, a representative of the first group, was first described by Geller (1955) as a distorted Ni₂In structure. A small distortion of the Ni₂In nets (which are drawn in Fig. 1(b) for θ -Ni₂Si; Toman, 1952) results in the Co₂Si structure with rather similar coordination polyhedra for the two transition metal atoms [Fig. 1(d)], but a much larger distortion is needed to accommodate the larger Ti atoms in the TiNiSi structure [Fig. 1(a)]. Going from the θ -Ni₂Si structure (Ni₂In type), through Co₂Si to the TiNiSi structure the numbers of near neighbors change as follows:

θ-Ni₂Si		C	02Si	-	TiNiSi		
Ni(I)	14	Co(I)	13(+1?)	Ti	15(+3?)		
Ni(II)	11	Co(II)	13	Ni	12		
Si(In)	11	Si	10(+5?)	Si	9(+1?)		

(The definition of 'neighbors' is, of course, to some degree arbitrary. The numbers in parentheses indicate the shading between neighbors and non-neighbors.)

The Co₂Si network is only a small distortion of the well known 3^2 . 4. 3. 4 network which is shown by solid lines in the diagram of U_3Si_2 [Fig. 1(c); Zachariasen, 1949(a)] and which also occurs in the CuAl₂ structure type (Frank & Kasper, 1959) and as the secondary layer in the σ phase. The U₃Si₂ structure has two kinds of planar nets, in alternating sequence: the first one is the 3^2 . 4.3.4 net already mentioned, which is formed by U(II) atoms, and the second one is a net consisting of pentagons formed by 3 Si and 2 U(I). The surroundings of the atoms in U_3Si_2 are very similar to those in TiNiSi which is built of two *identical* planar nets in different orientation, each consisting of triangles, quadrangles and pentagons. U(I) has surroundings similar to those of Ni with a practically nondistorted cube; U(II) corresponds to Ti and Si to Si.

The only other ternary compound described with the $PbCl_2$ structure is Pb(OH)Cl (Brasseur, 1940).

Professor P. A. Beck also kindly sent us a specimen of an alloy MnCoSi which we found to be indexable on an *E*-phase type cell with $a_0 = 5.8543 \pm 0.0016$, $b_0 = 6.8526 \pm 0.0017$, $c_0 = 3.6853 \pm 0.0013$ Å. The alloy presumably has the *E*-phase structure but no parameter refinement was carried out.

We wish to thank Professor Paul A. Beck of the University of Illinois for supplying us with specimens and Mr. L. G. Feinstein for assistance with the X-ray photography. We gratefully acknowledge financial support from the U. S. Army Research Office (Durham) and the use of the facilities of the M.I.T. Computation Center.

References

- ARONSSON, B. (1960). Arkiv Kemi 16, 379.
- BERG, J. M. VAN DEN (1961). Acta Cryst. 14, 1002.
- BERGSMA, J. & LOOPSTRA, B. O. (1962). Acta Cryst. 15, 92.
- BHAN, S. & SCHUBERT, K. (1960). Z. Metallk. 51, 327.
- BRASSEUR, M. (1940). Bull. Soc. roy. Sci. Liège 9, 166.
- BUSING, W. R. & LEVY, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program, ORNL-TM-305.
- D'EYE, R. W. M. (1953). J. Chem. Soc., 1670.
- EVANS, Jr., H. T., APPLEMAN, D. E. & HANDWERKER, D. S. (1963). Abstracts ACA Meeting, Cambridge, Mass.
- FRANK, F. C. & KASPER, J. S. (1959). Acta Cryst. 12, 483. Geller, S. (1955). Acta Cryst. 8, 83.
- GIESSEN, B. C., IBACH, H. & GRANT, N. J. (1964). Trans.
- Amer. Inst. Min. (metall) Engrs, 230, 113. International Tables for X-Ray Crystallography (1962). Vol.
- III, Table 3.3.1A. Birmingham: Kynoch Press.
- JELLINEK, F. (1959) Österr. Chemiker. Ztg. 60, 311.
- NELSON, J. B. & RILEY, D. P. (1945). Proc. Phys. Soc. 57, 160.
- RUNDQUIST, S. (1960). Acta Chem. Scand. 14, 1961.
- SPIEGEL, F. X., BARDOS, D. & BECK, P. A. (1963). Trans. Amer. Inst. Min. (metall) Engrs, 227, 575.
- TOMAN, K. (1952). Acta Cryst. 5, 329.
- WELLS, A. F. (1954). Acta Cryst. 7, 535.
- WESTBROOK, J. H., DICERBO, R. K. & PEAT, A. J. (1958). General Electric Co. GE-58RL 2117.
- ZACHARIASEN, W. H. (1949a). Acta Cryst. 2, 94.
- ZACHARIASEN, W. H. (1949b). Acta Cryst. 2, 291.